Here's a page to share important papers, review articles, relevant news, etc.

Special issues

Chemical Reviews, vol. 112 (2012) Phys. Chem. Chem. Phys. vol. 13 (2011) Eur. J. Phys. D vol. 65 (2011) New J. Phys. vol. 11 (2009) J. Phys. B vol. 39 (2006) Eur. J. Phys. D vol. 31 (2004) J. Res. Nat. Inst. Stand. Technol. vol. 101 (1996)

Review articles

Introduction to Ultracold Molecules: New Frontiers in Quantum and Chemical Physics
D. S. Jin and J. Ye Chemical Reviews, 112, 4801 (2012).

Condensed Matter Theory of Dipolar Quantum Gases
M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller Chemical Reviews, 112, 5012–5061 (2012) [http://pubs.acs.org/doi/abs/10.1021/cr2003568]

Cold and ultracold molecules: science, technology and applications
L. D. Carr, D. DeMille, R. V. Krems and J. Ye
New J. Phys.,11, 055049 (2009)

The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics
O. Dulieu and C. Gabbanini
Rep. Prog. Phys., 72, 086401 (2009)

Ultracold molecules and ultracold chemistry
M. T. Bell and T. P. Softley
Mol. Phys., 107, 99 (2009)

Cold controlled chemistry
R. V. Krems
Phys. Chem. Chem. Phys., 10, 4079 (2008)

Theoretical progress in many-body physics with ultracold dipolar gases
M. A. Baranov
Physics Reports, 464, 71, (2008)

Molecular collisions in ultracold atomic gases
P. Soldan and J. H. Hutson
Int. Rev. Phys. Chem., 26, 1 (2007)

Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering
K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne
Rev. Mod. Phys., 78, 483 (2006)

Production of cold molecules via magnetically tunable Feshbach resonances
T. Köhler, K. Góral, and P. S. Julienne
Rev. Mod. Phys., 78, 1311 (2006)

Molecule formation in ultracold atomic gases
J. H. Hutson and P. Soldan,
Int. Rev. Phys. Chem., 25, 497 (2006)

Molecules near absolute zero and external field control of atomic and molecular dynamics
R. V. Krems
Int. Rev. Phys. Chem., 24, 99 (2005)

Production and application of translationally cold molecules
H. L. Bethlem and G. Meijer
Int. Rev. Phys. Chem., 22, 73 (2003)

Formation of cold (T<1 K) molecules
J. T. Bahns, P. L. Gould, and W. C. Stwalley
Adv. At. Mol. Opt. Phys., 42, 171 (2000)

Photoassociation of Ultracold Atoms: A New Spectroscopic Technique
W. C. Stwalley and H. Wang
J. Molec. Spectrosc., 195, 194 (1999)

Experiments and theory in cold and ultracold collisions
J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne
Rev. Mod. Phys., 71, 1 (1999)

1.Methods for production and cooling of molecules

Direct methods

Sisyphus cooling

Optoelectrical cooling of polar molecules
M. Zeppenfeld, M. Motsch, P.W.H. Pinkse, and G. Rempe Physical Review A 80, 041401(R) (2009)

Sisyphus cooling of electrically trapped polyatomic molecules
M. Zeppenfeld, B.G.U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L.D. van Buuren, M. Motsch, and G. Rempe Nature 491, 570 (2012)

Indirect methods

Photo-association

Coherent control of ultracold photoassociation
Christiane P. Koch and Moshe Shapiro. Chemical Reviews212, 4928-4948 (2012). [http://dx.doi.org/10.1021/cr2003882]

Enhancing photoassociation rates by non-resonant light control of shape resonances.
Rosario González-Férez and Christiane P. Koch.
Phys. Rev. A 86, 063420 (2012). [http://dx.doi.org/ 10.1103/PhysRevA.86.063420]

Magneto-association through Feshbach resonances

Formation of a Bose condensate of stable molecules via a Feshbach resonance
S.J.J.M.F. Kokkelmans, H.M.J. Vissers, and B.J. Verhaar Phys. Rev. A 63, 031601 (2001).

Many-body dynamics of p-wave Feshbach-molecule production: A mean-field approach
L. Austen , L. Cook , M. D. Lee , and J. Mur-Petit
Phys. Rev. A 87, 023610 (2013) [http://link.aps.org/doi/10.1103/PhysRevA.87.023610]

Preformed pairs in lattices

2. Fundamental science with ultracold molecules

High-resolution spectroscopy

Temperature-independent quantum logic for molecular spectroscopy
J. Mur-Petit, J. J. García-Ripoll, J. Pérez-Ríos, J. Campos-Martínez, M. I. Hernández, and S. Willitsch
Phys. Rev. A 85, 022308 (2012) [http://link.aps.org/doi/10.1103/PhysRevA.85.022308]

Precision measurement

Tests of fundamental symmetries

Chemistry in the ultracold regime

Observation of resonances in Penning ionization reactions at sub-Kelvin temperatures in merged beams
A. B. Henson, S. Gersten, Y. Shagam, J. Narevicius and E. Narevicius Science, 338, 234 (2012), [10.1126/science.1229141]

Quantum-state resolved bi-molecular collisions of velocity-controlled OH with NO radicals
M. Kirste, X. Wang, H. Christian Schewe, G. Meijer, K. Liu, A. van der Avoird, L. M. C. Janssen, K. B. Gubbels, G. C. Groenenboom, and S. Y. T. van de Meerakker Science, 338, 1060 (2012), [10.1126/science.1229549]

Quantum reactive scattering of ultracold NH(X,3Σ-) radicals in a magnetic trap
L. M. C. Janssen, A. van der Avoird, and G. C. Groenenboom Phys. Rev. Lett.,110, 063201 (2013). [10.1103/PhysRevLett.110.063201]

Few-body physics, universal and non-universal

Ultracold molecules from ultracold atoms: a case study with the KRb molecule
P. S. Julienne Faraday Discussions,142, 361–388 (2009)[http://dx.doi.org/10.1039/b820917k]

Collisional Control of Ground State Polar Molecules and Universal Dipolar Scattering
Christopher Ticknor Phys. Rev. Lett. 100, 133202 (2008)

Quasi-universal dipolar scattering in cold and ultracold gases

Investigating polaron transitions with polar molecules
F. Herrera, K. W. Madison, R. V. Krems, and M. Berciu, [arxiv:1212.6212]

Tunable Holstein model with cold polar molecules
F. Herrera and R. V. Krems
Phys. Rev. A 84, 051401 (2011) [10.1103/PhysRevA.84.051401]

Quantum information

Toward a Molecular Ion Qubit
J. Mur-Petit, J. Pérez-Ríos, J. Campos-Martínez, M.I. Hernández, S. Willitsch, and J. J. García-Ripoll
Pages 267-277, in "Architecture and Design of Molecule Logic Gates and Atom Circuits" (N. Lorente, C. Joachim, eds., Springer 2013) We identify the two lowest fine-structure states of O2+(2 Pi_g, v=0, J=1/2, M=+/-1/2) as a potential qubit with long coherence times.

3. New theoretical formalism

Analytical models for Feshbach resonances and weakly-bound molecules

Feshbach resonances with large background scattering length: interplay with open-channel resonances
B. Marcelis, E. G. M. van Kempen, B. J. Verhaar, S. J. J. M. F. Kokkelmans Phys. Rev. A 70, 012701 (2004).

Asymptotic Bound-state Model for Feshbach Resonances
T.G. Tiecke, M.R. Goosen, J.T.M. Walraven, and S.J.J.M.F. Kokkelmans Phys. Rev. A 82, 042712 (2010).

Simple theoretical models for resonant cold atom interactions
P. S. Julienne and B. Gao
In Roos, C and Haffner, H and Blatt, R, editor, Atomic Physics 20, volume 869 of AIP CONFERENCE PROCEEDINGS, pages 261–268, 2006. 20th International Conference on Atomic Physics, Innsbruck, AUSTRIA, JUL 16- 21 (2006)
Available at arXiv:physics/0609013v1
Analytic MQDT theory of Feshbach resonances in a van der Waals potential.

Collisions in reduced dimensions

Effective-scattering-length model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps
E. L. Bolda, E. Tiesinga, and P. S. Julienne Phys. Rev. A 66, 013403 (2002)
Use of energy-dependent scattering length at trap eigenenergies in an isotropic harmonic trapping cell, tested on a narrow Feshbach resonance case.

Pseudopotential model of ultracold atomic collisions in quasi-one- and two-dimensional traps
E. Bolda, E. Tiesinga, and P. Julienne Phys. Rev. A 68, 032702 (2003)
Analytic results using an energy-dependent scattering length as a pseudopotential in reduced dimension.

Making cold molecules by time-dependent Feshbach resonances
P. Julienne, E. Tiesinga, and T. Koehler
J. Mod. Optics 51, 1787-1806 (2004) (Symposium on Quantum Challenges 2, Falenty, POLAND, SEP 03-07, 2003)
also available as arXiv:cond-mat/0312492v3, with some typographical errors corrected.

Ultracold dimer association induced by a far-off-resonance optical lattice
E. Bolda, E. Tiesinga, and P. Julienne Phys. Rev. A 71, 033404 (2005)
Rate calculated for association of two atoms via anharmonic coupling of relative and center-of-mass motion in a harmonic trapping cell.

Optical Feshbach resonances of alkaline-earth-metal atoms in a one- or two-dimensional optical lattice
P. Naidon and P. S. Julienne Phys. Rev. A 74, 062713 (2006)
General formulation of resonance scattering in quasi-2D and quasi-1D geometry, related to ordinary free space scattering.

Effective-range description of a bose gas under strong one- or two-dimensional confinement
P. Naidon, E. Tiesinga, W. F. Mitchell, and P. S. Julienne New J. Phys. 9, 19 (2007)
Use of an energy-dependent scattering length, and its justification, for calculating confinement-induced resonances in quasi-2D and quasi-1D geometry.

Two-dimensional dipolar scattering
Christopher Ticknor Phys. Rev. A 80, 052702 (2009).
Simple estimates of the cross section for a 2D dipolar gas.

Universal rates for reactive ultracold polar molecules in reduced dimensions
A. Micheli, Z. Idziaszek, G. Pupillo, M. A. Baranov, P. Zoller, and P. S. Julienne Phys. Rev. Lett. 105, 073202 (2010)
Collision of two reactive dipolar molecules in quasi-2D and quasi-1D geometry for the van der Waals case with zero electric field and in quasi-2D when there is an electric field-induced dipole for the case of KRb.

Universal ultracold collision rates for polar molecules of two alkali-metal atoms
P. S. Julienne, T. M. Hanna, and Z. Idziaszek Phys. Chem. Chem. Phys. 13, 19114 (2011)
Estimates of universal collision properties and E-field suppression of reaction rates in quasi-2D geometry for all 10 mixed-alkali polar diatomic molecules.

Resonant control of polar molecules in individual sites of an optical lattice
T. M. Hanna, E. Tiesinga, W. F. Mitchell, and P. S. Julienne Phys. Rev. A 85, 022703 (2012)
Numerical model of the bound states of two molecular dipoles in an electric field in a harmonic trapping cell with "pancake" geometry, showing a series of field-tunable resonances.

## Table of Contents

## Special issues

Chemical Reviews, vol. 112 (2012)

Phys. Chem. Chem. Phys. vol. 13 (2011)

Eur. J. Phys. D vol. 65 (2011)

New J. Phys. vol. 11 (2009)

J. Phys. B vol. 39 (2006)

Eur. J. Phys. D vol. 31 (2004)

J. Res. Nat. Inst. Stand. Technol. vol. 101 (1996)

## Review articles

Introduction to Ultracold Molecules: New Frontiers in Quantum and Chemical PhysicsD. S. Jin and J. Ye

Chemical Reviews,112, 4801 (2012).Ultracold molecules under controlG. Quéméner and P. S. Julienne

Chemical Reviews,112, 4949– 5011 (2012). [http://pubs.acs.org/doi/abs/10.1021/cr300092g]Condensed Matter Theory of Dipolar Quantum GasesM. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller

Chemical Reviews,112, 5012–5061 (2012) [http://pubs.acs.org/doi/abs/10.1021/cr2003568]Coulomb-crystallised molecular ions in traps: methods, applications, prospectsStefan Willitsch

Int. Rev. Phys. Chem.,31,175 (2012) [http://www.tandfonline.com/doi/abs/10.1080/0144235X.2012.667221]Feshbach resonances in ultracold gasesC. Chin, R. Grimm, P. Julienne, and E. Tiesinga.

Rev. Mod. Phys.,82, 1225 (2010) [http://dx.doi.org/10.1103/RevModPhys.82.1225]Production of cold molecules via magnetically tunable Feshbach resonancesT. Köhler, K. Góral, and P. S. Julienne

Rev. Mod. Phys.

78, 1311 (2006) [http://link.aps.org/doi/10.1103/RevModPhys.78.1311]Cold and ultracold molecules: science, technology and applicationsL. D. Carr, D. DeMille, R. V. Krems and J. Ye

New J. Phys.,

11, 055049 (2009)The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physicsO. Dulieu and C. Gabbanini

Rep. Prog. Phys.,

72, 086401 (2009)Ultracold molecules and ultracold chemistryM. T. Bell and T. P. Softley

Mol. Phys.,

107, 99 (2009)Chemical applications of laser- and sympathetically cooled ions in ion trapsS. Willitsch, M. Bell, A. Gingell and T.P. Softley

Phys. Chem. Chem. Phys.,10, 7200 (2008) [http://pubs.rsc.org/en/Content/ArticleLanding/2008/CP/b813408c]Cold controlled chemistryR. V. Krems

Phys. Chem. Chem. Phys.,

10, 4079 (2008)Theoretical progress in many-body physics with ultracold dipolar gasesM. A. Baranov

Physics Reports,

464, 71, (2008)Molecular collisions in ultracold atomic gasesP. Soldan and J. H. Hutson

Int. Rev. Phys. Chem.,

26, 1 (2007)Ultracold photoassociation spectroscopy: Long-range molecules and atomic scatteringK. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne

Rev. Mod. Phys.,

78, 483 (2006)Production of cold molecules via magnetically tunable Feshbach resonancesT. Köhler, K. Góral, and P. S. Julienne

Rev. Mod. Phys.,

78, 1311 (2006)Molecule formation in ultracold atomic gasesJ. H. Hutson and P. Soldan,

Int. Rev. Phys. Chem.,

25, 497 (2006)Molecules near absolute zero and external field control of atomic and molecular dynamicsR. V. Krems

Int. Rev. Phys. Chem.,

24, 99 (2005)Production and application of translationally cold moleculesH. L. Bethlem and G. Meijer

Int. Rev. Phys. Chem.,

22, 73 (2003)Formation of cold (T<1 K) moleculesJ. T. Bahns, P. L. Gould, and W. C. Stwalley

Adv. At. Mol. Opt. Phys.,

42, 171 (2000)Photoassociation of Ultracold Atoms: A New Spectroscopic TechniqueW. C. Stwalley and H. Wang

J. Molec. Spectrosc.,

195, 194 (1999)Experiments and theory in cold and ultracold collisionsJ. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne

Rev. Mod. Phys.,

71, 1 (1999)## 1.Methods for production and cooling of molecules

## Direct methods

Sisyphus coolingOptoelectrical cooling of polar moleculesM. Zeppenfeld, M. Motsch, P.W.H. Pinkse, and G. Rempe

Physical Review A80, 041401(R) (2009)Sisyphus cooling of electrically trapped polyatomic moleculesM. Zeppenfeld, B.G.U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L.D. van Buuren, M. Motsch, and G. Rempe

Nature491, 570 (2012)## Indirect methods

## Photo-association

Coherent control of ultracold photoassociationChristiane P. Koch and Moshe Shapiro.

Chemical Reviews212, 4928-4948 (2012). [http://dx.doi.org/10.1021/cr2003882]Enhancing photoassociation rates by non-resonant light control of shape resonances.Rosario González-Férez and Christiane P. Koch.

Phys. Rev. A

86, 063420 (2012). [http://dx.doi.org/ 10.1103/PhysRevA.86.063420]## Magneto-association through Feshbach resonances

Formation of a Bose condensate of stable molecules via a Feshbach resonanceS.J.J.M.F. Kokkelmans, H.M.J. Vissers, and B.J. Verhaar

Phys. Rev. A 63, 031601 (2001).

Production of cold molecules via magnetically tunable Feshbach resonancesT. Köhler, K. Góral, and P. S. Julienne

Rev. Mod. Phys.

78, 1311 (2006) [http://link.aps.org/doi/10.1103/RevModPhys.78.1311]Many-body dynamics ofp-wave Feshbach-molecule production: A mean-field approachL. Austen , L. Cook , M. D. Lee , and J. Mur-Petit

Phys. Rev. A 87, 023610 (2013) [http://link.aps.org/doi/10.1103/PhysRevA.87.023610]

## Preformed pairs in lattices

## 2. Fundamental science with ultracold molecules

High-resolution spectroscopyTemperature-independent quantum logic for molecular spectroscopyJ. Mur-Petit, J. J. García-Ripoll, J. Pérez-Ríos, J. Campos-Martínez, M. I. Hernández, and S. Willitsch

Phys. Rev. A

85, 022308 (2012) [http://link.aps.org/doi/10.1103/PhysRevA.85.022308]Precision measurementTests of fundamental symmetriesChemistry in the ultracold regimeObservation of resonances in Penning ionization reactions at sub-Kelvin temperatures in merged beamsA. B. Henson, S. Gersten, Y. Shagam, J. Narevicius and E. Narevicius

Science,338, 234 (2012), [10.1126/science.1229141]Quantum-state resolved bi-molecular collisions of velocity-controlled OH with NO radicalsM. Kirste, X. Wang, H. Christian Schewe, G. Meijer, K. Liu, A. van der Avoird, L. M. C. Janssen, K. B. Gubbels, G. C. Groenenboom, and S. Y. T. van de Meerakker

Science,338, 1060 (2012), [10.1126/science.1229549]Quantum reactive scattering of ultracold NH(X,3Σ-) radicals in a magnetic trapL. M. C. Janssen, A. van der Avoird, and G. C. Groenenboom

Phys. Rev. Lett.,110, 063201 (2013). [10.1103/PhysRevLett.110.063201]Few-body physics, universal and non-universalUltracold molecules from ultracold atoms: a case study with the KRb moleculeP. S. Julienne

Faraday Discussions,142, 361–388 (2009)[http://dx.doi.org/10.1039/b820917k]Collisional Control of Ground State Polar Molecules and Universal Dipolar ScatteringChristopher Ticknor

Phys. Rev. Lett. 100, 133202 (2008)

## Quasi-universal dipolar scattering in cold and ultracold gases

J L Bohn, M Cavagnero and C TicknorNew J. Phys.11055039 doi:10.1088/1367-2630/11/5/055039Three Body Recombination of Ultracold Dipoles to Weakly Bound DimersChristopher Ticknor and Seth T. Rittenhouse

Phys. Rev. Lett. 105, 013201 (2010).

Universal Three-Body Physics for Fermionic DipolesYujun Wang, J. P. D’Incao, and Chris H. Greene

Phys. Rev. Lett. 107, 233201 (2011)

Many-body physics and quantum simulationInvestigating polaron transitions with polar moleculesF. Herrera, K. W. Madison, R. V. Krems, and M. Berciu, [arxiv:1212.6212]

Tunable Holstein model with cold polar moleculesF. Herrera and R. V. Krems

Phys. Rev. A 84, 051401 (2011) [10.1103/PhysRevA.84.051401]

Quantum informationToward a Molecular Ion QubitJ. Mur-Petit, J. Pérez-Ríos, J. Campos-Martínez, M.I. Hernández, S. Willitsch, and J. J. García-Ripoll

Pages 267-277, in "Architecture and Design of Molecule Logic Gates and Atom Circuits" (N. Lorente, C. Joachim, eds., Springer 2013)

We identify the two lowest fine-structure states of O2+(2 Pi_g, v=0, J=1/2, M=+/-1/2) as a potential qubit with long coherence times.## 3. New theoretical formalism

## Analytical models for Feshbach resonances and weakly-bound molecules

Feshbach resonances with large background scattering length: interplay with open-channel resonancesB. Marcelis, E. G. M. van Kempen, B. J. Verhaar, S. J. J. M. F. Kokkelmans

Phys. Rev. A 70, 012701 (2004).

Asymptotic Bound-state Model for Feshbach ResonancesT.G. Tiecke, M.R. Goosen, J.T.M. Walraven, and S.J.J.M.F. Kokkelmans

Phys. Rev. A 82, 042712 (2010).

Simple theoretical models for resonant cold atom interactionsP. S. Julienne and B. Gao

In Roos, C and Haffner, H and Blatt, R, editor, Atomic Physics 20, volume 869 of AIP CONFERENCE PROCEEDINGS, pages 261–268, 2006. 20th International Conference on Atomic Physics, Innsbruck, AUSTRIA, JUL 16- 21 (2006)

Available at arXiv:physics/0609013v1

Analytic MQDT theory of Feshbach resonances in a van der Waals potential.

Collisions in reduced dimensionsEffective-scattering-length model of ultracold atomic collisions and Feshbach resonances in tight harmonic trapsE. L. Bolda, E. Tiesinga, and P. S. Julienne

Phys. Rev. A 66, 013403 (2002)

Use of energy-dependent scattering length at trap eigenenergies in an isotropic harmonic trapping cell, tested on a narrow Feshbach resonance case.

Pseudopotential model of ultracold atomic collisions in quasi-one- and two-dimensional trapsE. Bolda, E. Tiesinga, and P. Julienne

Phys. Rev. A 68, 032702 (2003)

Analytic results using an energy-dependent scattering length as a pseudopotential in reduced dimension.

Making cold molecules by time-dependent Feshbach resonancesP. Julienne, E. Tiesinga, and T. Koehler

J. Mod. Optics 51, 1787-1806 (2004) (Symposium on Quantum Challenges 2, Falenty, POLAND, SEP 03-07, 2003)

also available as arXiv:cond-mat/0312492v3, with some typographical errors corrected.

Ultracold dimer association induced by a far-off-resonance optical latticeE. Bolda, E. Tiesinga, and P. Julienne

Phys. Rev. A 71, 033404 (2005)

Rate calculated for association of two atoms via anharmonic coupling of relative and center-of-mass motion in a harmonic trapping cell.

Optical Feshbach resonances of alkaline-earth-metal atoms in a one- or two-dimensional optical latticeP. Naidon and P. S. Julienne

Phys. Rev. A 74, 062713 (2006)

General formulation of resonance scattering in quasi-2D and quasi-1D geometry, related to ordinary free space scattering.

Effective-range description of a bose gas under strong one- or two-dimensional confinementP. Naidon, E. Tiesinga, W. F. Mitchell, and P. S. Julienne

New J. Phys. 9, 19 (2007)

Use of an energy-dependent scattering length, and its justification, for calculating confinement-induced resonances in quasi-2D and quasi-1D geometry.

Two-dimensional dipolar scatteringChristopher Ticknor

Phys. Rev. A 80, 052702 (2009).

Simple estimates of the cross section for a 2D dipolar gas.

Quasi-two-dimensional dipolar scatteringChristopher Ticknor

Phys. Rev. A 81, 042708 (2010).

Universal rates for reactive ultracold polar molecules in reduced dimensionsA. Micheli, Z. Idziaszek, G. Pupillo, M. A. Baranov, P. Zoller, and P. S. Julienne

Phys. Rev. Lett. 105, 073202 (2010)

Collision of two reactive dipolar molecules in quasi-2D and quasi-1D geometry for the van der Waals case with zero electric field and in quasi-2D when there is an electric field-induced dipole for the case of KRb.

Universal ultracold collision rates for polar molecules of two alkali-metal atomsP. S. Julienne, T. M. Hanna, and Z. Idziaszek

Phys. Chem. Chem. Phys. 13, 19114 (2011)

Estimates of universal collision properties and E-field suppression of reaction rates in quasi-2D geometry for all 10 mixed-alkali polar diatomic molecules.

Resonant control of polar molecules in individual sites of an optical latticeT. M. Hanna, E. Tiesinga, W. F. Mitchell, and P. S. Julienne

Phys. Rev. A 85, 022703 (2012)

Numerical model of the bound states of two molecular dipoles in an electric field in a harmonic trapping cell with "pancake" geometry, showing a series of field-tunable resonances.

## 4. Relations to other fields

## Highly magnetic atoms

## Molecular ions