Reference Material

Here's a page to share important papers, review articles, relevant news, etc.

Special issues


Chemical Reviews, vol. 112 (2012)
Phys. Chem. Chem. Phys. vol. 13 (2011)
Eur. J. Phys. D vol. 65 (2011)
New J. Phys. vol. 11 (2009)
J. Phys. B vol. 39 (2006)
Eur. J. Phys. D vol. 31 (2004)
J. Res. Nat. Inst. Stand. Technol. vol. 101 (1996)

Review articles


Introduction to Ultracold Molecules: New Frontiers in Quantum and Chemical Physics
D. S. Jin and J. Ye
Chemical Reviews, 112, 4801 (2012).

Ultracold molecules under control
G. Quéméner and P. S. Julienne
Chemical Reviews, 112, 4949– 5011 (2012). [http://pubs.acs.org/doi/abs/10.1021/cr300092g]

Condensed Matter Theory of Dipolar Quantum Gases
M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller
Chemical Reviews, 112, 5012–5061 (2012) [http://pubs.acs.org/doi/abs/10.1021/cr2003568]

Coulomb-crystallised molecular ions in traps: methods, applications, prospects
Stefan Willitsch
Int. Rev. Phys. Chem., 31,175 (2012) [http://www.tandfonline.com/doi/abs/10.1080/0144235X.2012.667221]

Feshbach resonances in ultracold gases
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga.
Rev. Mod. Phys., 82, 1225 (2010) [http://dx.doi.org/10.1103/RevModPhys.82.1225]

Production of cold molecules via magnetically tunable Feshbach resonances
T. Köhler, K. Góral, and P. S. Julienne
Rev. Mod. Phys. 78, 1311 (2006) [http://link.aps.org/doi/10.1103/RevModPhys.78.1311]

Cold and ultracold molecules: science, technology and applications
L. D. Carr, D. DeMille, R. V. Krems and J. Ye
New J. Phys.,11, 055049 (2009)


The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics
O. Dulieu and C. Gabbanini
Rep. Prog. Phys., 72, 086401 (2009)

Ultracold molecules and ultracold chemistry
M. T. Bell and T. P. Softley
Mol. Phys., 107, 99 (2009)

Chemical applications of laser- and sympathetically cooled ions in ion traps
S. Willitsch, M. Bell, A. Gingell and T.P. Softley
Phys. Chem. Chem. Phys., 10, 7200 (2008) [http://pubs.rsc.org/en/Content/ArticleLanding/2008/CP/b813408c]

Cold controlled chemistry
R. V. Krems
Phys. Chem. Chem. Phys., 10, 4079 (2008)

Theoretical progress in many-body physics with ultracold dipolar gases
M. A. Baranov
Physics Reports, 464, 71, (2008)

Molecular collisions in ultracold atomic gases
P. Soldan and J. H. Hutson
Int. Rev. Phys. Chem., 26, 1 (2007)

Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering
K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne
Rev. Mod. Phys., 78, 483 (2006)

Production of cold molecules via magnetically tunable Feshbach resonances
T. Köhler, K. Góral, and P. S. Julienne
Rev. Mod. Phys., 78, 1311 (2006)

Molecule formation in ultracold atomic gases
J. H. Hutson and P. Soldan,
Int. Rev. Phys. Chem., 25, 497 (2006)

Molecules near absolute zero and external field control of atomic and molecular dynamics
R. V. Krems
Int. Rev. Phys. Chem., 24, 99 (2005)

Production and application of translationally cold molecules
H. L. Bethlem and G. Meijer
Int. Rev. Phys. Chem., 22, 73 (2003)

Formation of cold (T<1 K) molecules
J. T. Bahns, P. L. Gould, and W. C. Stwalley
Adv. At. Mol. Opt. Phys., 42, 171 (2000)

Photoassociation of Ultracold Atoms: A New Spectroscopic Technique
W. C. Stwalley and H. Wang
J. Molec. Spectrosc., 195, 194 (1999)

Experiments and theory in cold and ultracold collisions
J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne
Rev. Mod. Phys., 71, 1 (1999)

1.Methods for production and cooling of molecules

Direct methods


Sisyphus cooling

Optoelectrical cooling of polar molecules
M. Zeppenfeld, M. Motsch, P.W.H. Pinkse, and G. Rempe
Physical Review A 80, 041401(R) (2009)

Sisyphus cooling of electrically trapped polyatomic molecules
M. Zeppenfeld, B.G.U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L.D. van Buuren, M. Motsch, and G. Rempe
Nature 491, 570 (2012)

Indirect methods


Photo-association


Coherent control of ultracold photoassociation
Christiane P. Koch and Moshe Shapiro.
Chemical Reviews 212, 4928-4948 (2012). [http://dx.doi.org/10.1021/cr2003882]

Enhancing photoassociation rates by non-resonant light control of shape resonances.
Rosario González-Férez and Christiane P. Koch.
Phys. Rev. A 86, 063420 (2012). [http://dx.doi.org/ 10.1103/PhysRevA.86.063420]

Magneto-association through Feshbach resonances


Formation of a Bose condensate of stable molecules via a Feshbach resonance
S.J.J.M.F. Kokkelmans, H.M.J. Vissers, and B.J. Verhaar
Phys. Rev. A 63, 031601 (2001).

Production of cold molecules via magnetically tunable Feshbach resonances
T. Köhler, K. Góral, and P. S. Julienne
Rev. Mod. Phys. 78, 1311 (2006) [http://link.aps.org/doi/10.1103/RevModPhys.78.1311]

Many-body dynamics of p-wave Feshbach-molecule production: A mean-field approach
L. Austen , L. Cook , M. D. Lee , and J. Mur-Petit
Phys. Rev. A 87, 023610 (2013) [http://link.aps.org/doi/10.1103/PhysRevA.87.023610]

Preformed pairs in lattices

2. Fundamental science with ultracold molecules

High-resolution spectroscopy

Temperature-independent quantum logic for molecular spectroscopy
J. Mur-Petit, J. J. García-Ripoll, J. Pérez-Ríos, J. Campos-Martínez, M. I. Hernández, and S. Willitsch
Phys. Rev. A 85, 022308 (2012) [http://link.aps.org/doi/10.1103/PhysRevA.85.022308]

Precision measurement


Tests of fundamental symmetries


Chemistry in the ultracold regime


Observation of resonances in Penning ionization reactions at sub-Kelvin temperatures in merged beams
A. B. Henson, S. Gersten, Y. Shagam, J. Narevicius and E. Narevicius
Science, 338, 234 (2012), [10.1126/science.1229141]

Quantum-state resolved bi-molecular collisions of velocity-controlled OH with NO radicals
M. Kirste, X. Wang, H. Christian Schewe, G. Meijer, K. Liu, A. van der Avoird, L. M. C. Janssen, K. B. Gubbels, G. C. Groenenboom, and S. Y. T. van de Meerakker
Science, 338, 1060 (2012), [10.1126/science.1229549]

Quantum reactive scattering of ultracold NH(X,3Σ-) radicals in a magnetic trap
L. M. C. Janssen, A. van der Avoird, and G. C. Groenenboom
Phys. Rev. Lett., 110, 063201 (2013). [10.1103/PhysRevLett.110.063201]

Few-body physics, universal and non-universal


Ultracold molecules from ultracold atoms: a case study with the KRb molecule
P. S. Julienne
Faraday Discussions,142, 361–388 (2009)[http://dx.doi.org/10.1039/b820917k]

Collisional Control of Ground State Polar Molecules and Universal Dipolar Scattering
Christopher Ticknor
Phys. Rev. Lett. 100, 133202 (2008)

Quasi-universal dipolar scattering in cold and ultracold gases

J L Bohn, M Cavagnero and C Ticknor
New J. Phys. 11 055039 doi:10.1088/1367-2630/11/5/055039

Three Body Recombination of Ultracold Dipoles to Weakly Bound Dimers
Christopher Ticknor and Seth T. Rittenhouse
Phys. Rev. Lett. 105, 013201 (2010).

Universal Three-Body Physics for Fermionic Dipoles
Yujun Wang, J. P. D’Incao, and Chris H. Greene
Phys. Rev. Lett. 107, 233201 (2011)

Many-body physics and quantum simulation


Investigating polaron transitions with polar molecules
F. Herrera, K. W. Madison, R. V. Krems, and M. Berciu, [arxiv:1212.6212]

Tunable Holstein model with cold polar molecules
F. Herrera and R. V. Krems
Phys. Rev. A 84, 051401 (2011) [10.1103/PhysRevA.84.051401]

Quantum information

Toward a Molecular Ion Qubit
J. Mur-Petit, J. Pérez-Ríos, J. Campos-Martínez, M.I. Hernández, S. Willitsch, and J. J. García-Ripoll
Pages 267-277, in "Architecture and Design of Molecule Logic Gates and Atom Circuits" (N. Lorente, C. Joachim, eds., Springer 2013)
We identify the two lowest fine-structure states of O2+(2 Pi_g, v=0, J=1/2, M=+/-1/2) as a potential qubit with long coherence times.

3. New theoretical formalism

Analytical models for Feshbach resonances and weakly-bound molecules


Feshbach resonances with large background scattering length: interplay with open-channel resonances
B. Marcelis, E. G. M. van Kempen, B. J. Verhaar, S. J. J. M. F. Kokkelmans
Phys. Rev. A 70, 012701 (2004).

Asymptotic Bound-state Model for Feshbach Resonances
T.G. Tiecke, M.R. Goosen, J.T.M. Walraven, and S.J.J.M.F. Kokkelmans
Phys. Rev. A 82, 042712 (2010).

Simple theoretical models for resonant cold atom interactions
P. S. Julienne and B. Gao
In Roos, C and Haffner, H and Blatt, R, editor, Atomic Physics 20, volume 869 of AIP CONFERENCE PROCEEDINGS, pages 261–268, 2006. 20th International Conference on Atomic Physics, Innsbruck, AUSTRIA, JUL 16- 21 (2006)
Available at arXiv:physics/0609013v1
Analytic MQDT theory of Feshbach resonances in a van der Waals potential.

Collisions in reduced dimensions


Effective-scattering-length model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps
E. L. Bolda, E. Tiesinga, and P. S. Julienne
Phys. Rev. A 66, 013403 (2002)
Use of energy-dependent scattering length at trap eigenenergies in an isotropic harmonic trapping cell, tested on a narrow Feshbach resonance case.

Pseudopotential model of ultracold atomic collisions in quasi-one- and two-dimensional traps
E. Bolda, E. Tiesinga, and P. Julienne
Phys. Rev. A 68, 032702 (2003)
Analytic results using an energy-dependent scattering length as a pseudopotential in reduced dimension.

Making cold molecules by time-dependent Feshbach resonances
P. Julienne, E. Tiesinga, and T. Koehler
J. Mod. Optics 51, 1787-1806 (2004) (Symposium on Quantum Challenges 2, Falenty, POLAND, SEP 03-07, 2003)
also available as arXiv:cond-mat/0312492v3, with some typographical errors corrected.

Ultracold dimer association induced by a far-off-resonance optical lattice
E. Bolda, E. Tiesinga, and P. Julienne
Phys. Rev. A 71, 033404 (2005)
Rate calculated for association of two atoms via anharmonic coupling of relative and center-of-mass motion in a harmonic trapping cell.

Optical Feshbach resonances of alkaline-earth-metal atoms in a one- or two-dimensional optical lattice
P. Naidon and P. S. Julienne
Phys. Rev. A 74, 062713 (2006)
General formulation of resonance scattering in quasi-2D and quasi-1D geometry, related to ordinary free space scattering.

Effective-range description of a bose gas under strong one- or two-dimensional confinement
P. Naidon, E. Tiesinga, W. F. Mitchell, and P. S. Julienne
New J. Phys. 9, 19 (2007)
Use of an energy-dependent scattering length, and its justification, for calculating confinement-induced resonances in quasi-2D and quasi-1D geometry.

Two-dimensional dipolar scattering
Christopher Ticknor
Phys. Rev. A 80, 052702 (2009).
Simple estimates of the cross section for a 2D dipolar gas.

Quasi-two-dimensional dipolar scattering
Christopher Ticknor
Phys. Rev. A 81, 042708 (2010).

Universal rates for reactive ultracold polar molecules in reduced dimensions
A. Micheli, Z. Idziaszek, G. Pupillo, M. A. Baranov, P. Zoller, and P. S. Julienne
Phys. Rev. Lett. 105, 073202 (2010)
Collision of two reactive dipolar molecules in quasi-2D and quasi-1D geometry for the van der Waals case with zero electric field and in quasi-2D when there is an electric field-induced dipole for the case of KRb.

Universal ultracold collision rates for polar molecules of two alkali-metal atoms
P. S. Julienne, T. M. Hanna, and Z. Idziaszek
Phys. Chem. Chem. Phys. 13, 19114 (2011)
Estimates of universal collision properties and E-field suppression of reaction rates in quasi-2D geometry for all 10 mixed-alkali polar diatomic molecules.

Resonant control of polar molecules in individual sites of an optical lattice
T. M. Hanna, E. Tiesinga, W. F. Mitchell, and P. S. Julienne
Phys. Rev. A 85, 022703 (2012)
Numerical model of the bound states of two molecular dipoles in an electric field in a harmonic trapping cell with "pancake" geometry, showing a series of field-tunable resonances.

4. Relations to other fields

Highly magnetic atoms


Molecular ions